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Abstract—Android’s flexible communication model allows in-
teractions among third-party apps, but it also leads to inter-
app security vulnerabilities. Specifically, malicious apps can
eavesdrop on interactions between other apps or exploit the
functionality of those apps, which can expose a user’s sensitive
information to attackers. While the state-of-the-art tools have
focused on detecting inter-app vulnerabilities in Android, they
neither accurately analyze realistically large numbers of apps
nor effectively deliver the identified issues to users. This paper
presents SEALANT, a novel tool that combines static analysis
and visualization techniques that, together, enable accurate iden-
tification of inter-app vulnerabilities as well as their systematic
visualization. SEALANT statically analyzes architectural infor-
mation of a given set of apps, infers vulnerable communication
channels where inter-app attacks can be launched, and visualizes
the identified information in a compositional representation.
SEALANT has been demonstrated to accurately identify inter-
app vulnerabilities from hundreds of real-world Android apps
and to effectively deliver the identified information to users.
(Demo Video: https://youtu.be/E4lLQonOdUw)

I. INTRODUCTION

Modern mobile devices handle users’ private information
such as contacts, passwords, and text messages. Android,
the most widely adopted mobile operating system today,
implements various security measures to protect user infor-
mation from attackers. However, Android still has known
security vulnerabilities [1]. One well-known vulnerability
resides in the design of Android’s communication model [2], in
which components within an app or across apps communicate
by exchanging messages called intents. Specifically, if app
developers do not carefully control the incoming and outgoing
intents, inter-component communication (ICC) via intent can
expose vulnerable surfaces to inter-app attacks, such as intent
spoofing [2], unauthorized intent receipt [2], and privilege
escalation [3].

A number of techniques have been proposed to detect inter-
app vulnerabilities in Android [2], [4]–[9]. However, existing
techniques target only single-app analysis [2], [4], [5] or
support limited types of inter-app attacks [6]–[9]. While the
state-of-the-art techniques [6], [7], [10] provide compositional
analysis of multiple apps, they have been shown to encounter
scalability problems in analyzing large numbers of apps, and/or
to suffer from a potentially large number of false alarms.
Furthermore, these techniques lack a systematic representation
of their analysis results, which hinders effective and intuitive
understanding of inter-app vulnerabilities by the end-users.

This paper presents SEALANT , a novel tool for automated
analysis and visualization of Android inter-app vulnerabilities,
which extends our prior work [11], [12]. SEALANT combines
static analysis with visualization techniques to enable compo-
sitional security analysis and systematic assessment of a set of
Android apps. Given a set of apps, SEALANT statically analyzes
their architectural information and identifies vulnerable ICC
paths between the apps by leveraging data-flow analysis and
ICC pattern matching. It then visualizes the combination of
architectural information of the target apps with the identified
vulnerable ICC paths between them, enabling users to associate
an appropriate action with each vulnerable path.

SEALANT is distinguished from the existing tools because
(1) it simultaneously detects multiple types of inter-app
attacks (i.e., intent spoofing, unauthorized intent receipt, and
privilege escalation), (2) it extends the detection coverage and
accuracy in identifying inter-app vulnerabilities, (3) it supports
a compositional analysis that scales to hundreds of real-world
apps, (4) it provides an efficient analysis by reusing prior
analysis results, and (5) it effectively delivers to end-users a
composition of large number of apps as well as their identified
vulnerabilities via a systematic visualization.

The rest of this paper is organized as follows. Section II
depicts examples of inter-app attacks that motivate our tool.
Section III presents SEALANT’s architecture along with the
description of major components and their implementations.
Section IV highlights SEALANT’s key features and Section V
demonstrates its evaluations. Section VI discusses related work
and Section VII concludes the paper.

II. MOTIVATING EXAMPLES

In this section, we present two simplified examples of inter-
app attacks: intent spoofing and unauthorized intent receipt.

Figure 1(a) depicts intent spoofing. Component M1 of a
malicious app Malicious1 can send an intent to component
V2 of a victim app Victim1 in order to exploit Victim1’s
functionalities. For example, if V2 is designed to dispatch an
SMS to the number bundled in an incoming intent from V1,
whenever M1 injects a spoofed intent to V2 along with unsafe
number and text, V2 will subsequently send an SMS to the
unintended number. In this case, a vulnerable ICC path exists
between M1 and V2.

Figure 1(b) illustrates an unauthorized intent receipt. In
case when an intent is sent or broadcast without particular
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Fig. 1: Inter-App Attacks: (a) Intent Spoofing and (b) Unau-
thorized Intent Receipt

protection, any component can receive it by declaring attributes
matching those of the intent. For example, component V3
of Victim2 is designed to broadcast an intent in order to
deliver an account’s information to the other component within
the same app (i.e., V4). By listening to the intent, although
not an intended receiver, component M2 of a malicious app
Malicious2 can eavesdrop on the information bundled in the
intent. In this case, a vulnerable ICC path exists between V3
and M2.

As shown in the examples, inter-app attacks are not easy to
distinguish from ordinary ICCs between apps. Since ICCs are
essentially invisible to users, it is difficult for users to recognize
where the attacks are actually launched. Furthermore, depending
on the types of apps composing a user’s device, vulnerable
ICC paths will vary. These characteristics make detection and
assessment of inter-app vulnerabilities quite challenging.

III. SEALANT’S DESIGN AND IMPLEMENTATION

SEALANT is a tool that automatically identifies ICC paths
in a set of target apps that are vulnerable to inter-app attacks,
and visualizes the identified paths using the architectural
information of those target apps. SEALANT processes a set of
APK1 files as input and displays the output in a pre-defined
representation.

As shown in Figure 2, SEALANT is designed to have two
layers. (1) SEALANT’s front-end is responsible for providing
the interactive user interface. The SEALANT Client component
belongs to this layer. (2) SEALANT’s back-end is responsible
for identifying vulnerable ICC paths from target apps, managing
the extracted information, and transforming the information
into a visually representable format. The back-end comprises
three main components: SEALANT Core, SEALANT Analyzer,
and SEALANT Repository. In the rest of this section, we will
describe the details of SEALANT’s four components and their
implementations.

A. SEALANT Client

SEALANT Client facilitates a user’s interaction with the
back-end layer. Once the user selects a set of APK files
that were automatically pulled from the user’s device [13]
or manually downloaded from online app stores, the SEALANT
Client forwards the files to the SEALANT Core and informs

1APK (Android Package Kit) is an archive file format that distributes and
installs Android apps on top of the Android operating system.

the user of the analysis status (e.g., displaying the analysis
progress).

The SEALANT Client renders the combined information
obtained from the SEALANT Core (i.e., app models and
identified vulnerable ICC paths) in tailorable visual notations.
For example, a component may be depicted as a black dot and
a vulnerable path as a red-line, as shown in Figure 3(a). The
SEALANT Client provides interactive interfaces that enable
users to customize display settings (e.g., size, font, and color)
or highlight particular architectural elements (e.g., component
or ICC path).

The SEALANT Client optionally contacts users to assess
each vulnerable ICC path. Since SEALANT’s static analysis
may over-approximate control-flow paths [11], which in turn
may result in spurious vulnerable ICC paths in some cases,
a user’s assessment can reduce the falsely identified paths in
subsequent analyses. Furthermore, referring to an expert user’s
assessments may aid non-expert users to isolate the falsely
identified paths.

B. SEALANT Core

SEALANT Core is responsible for controlling every operation
and transforming the analyzed information into a visually
representable format. It handles every request from SEALANT
Client. If a set of APK files is requested, the Core compo-
nent first checks if prior analysis results are stored in the
SEALANT Repository. If the corresponding results exist, the
Core reuses them. Otherwise, it decompiles the APK files and
passes them to the SEALANT Analyzer. The Core subsequently
combines and transforms the app models and vulnerable ICC
paths it receives back from the Analyzer into a pre-defined
format compatible with the SEALANT Client. The Core stores
the user’s assessments received from the SEALANT Client in
the SEALANT Repository.

C. SEALANT Analyzer

Given a set of apps, SEALANT Analyzer extracts each app’s
architectural information and summarizes the information as
a model of each app. The Analyzer identifies vulnerable ICC
paths between the apps using data-flow analysis and ICC pattern
matching. It consists of two sub-components: Model Extractor
and Vulnerability Identifier.

Model Extractor inspects each app’s Android manifest file
and bytecode to extract the app’s architectural information
(e.g., components, intent filters, permissions, and intents). For
each app component, Model Extractor performs data-flow
analysis between sensitive APIs [14] and ICC-call APIs [15].
A component that contains such a data-flow is marked as a
vulnerable component. Model Extractor then builds a summary-
based model that captures the information of each app, and
stores every model in the SEALANT Repository for reuse in
subsequent analyses.

Vulnerability Identifier analyzes vulnerable ICC paths from
a set of app models. To this end, it first builds an ICC graph
by matching intents and intent filters of each component based
on the rules from Android’s API reference documentation [16].
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Fig. 2: SEALANT’s Architecture

In an ICC graph, a node represents a component and an edge
is defined as a tuple < s, r, i >, where s is a sender and r a
receiver component, and i is an intent between them. SEALANT
then traverses the ICC graph and marks an edge as vulnerable
based on two criteria: (1) if there is a vulnerable component
at one or both ends and (2) if it is a part of a particular
compositional ICC patterns that may be vulnerable to inter-app
attacks. Specifically, two different edges (one across apps and
the other one within an app) that direct to the same component
with the same type of intent represent a vulnerable ICC pattern
susceptible to intent spoofing. Conversely, two different edges
(one across apps and the other one within an app) that start from
the same component with the same type of intent represent
a vulnerable ICC pattern susceptible to unauthorized intent
receipt. The identified vulnerable ICC paths are stored in the
SEALANT Repository for reuse in subsequent analyses.

D. SEALANT Repository

SEALANT Repository maintains the extracted app models
in its Model Database sub-component and the identified
vulnerable ICC paths in the Path Database sub-component.

Model Database manages each app’s model by its package
name and versions in order to enable reusing the extracted
information for further analyses. When apps are installed or
updated on a user’s device subsequent to running SEALANT ,
SEALANT extracts the architectural information only from the
installed or updated apps, and reuses the prior analysis results
for the rest. This can greatly reduce the total analysis time (as
evaluated in Section V).

Path Database maintains the identified vulnerable ICC
paths. For each vulnerable ICC path, it also maintains each
user’s assessment that indicates whether the ICC path is indeed
exposed to inter-app attacks or not.

E. Implementation

We have implemented the SEALANT Analyzer as a stand-
alone Java application that uses a set of APK files as its input.
It combines approximately 3,000 newly written LOC with off-
the-shelf tools. Specifically, to enable a complete extraction
of architectural information from apps, the Analyzer integrates
two static analysis tools: IC3 [17] and COVERT [10]. To
perform data-flow analysis on each component, the Analyzer
leverages FlowDroid [18], an intra-component taint analysis
tool for Android. The Analyzer combines the outputs from
those tools into complete app models. The app models for
architectural objects and identified vulnerable ICC paths are,
respectively, transformed into two different JSON files with
pre-defined formats. The JSON file for vulnerable ICC paths is
also compatible with Interceptor [11], an extension module we
have developed for the Android framework to control runtime
ICCs based on a given list of ICC paths.

We implemented the SEALANT Core using Java and shell
script code that integrates different components, totaling around
3,600 LOC.

We implemented the SEALANT Repository as a file system-
based repository. It maintains three different types of files:
(1) app models, (2) vulnerable ICC paths, and (3) assessments
of each vulnerable ICC path.

Finally, we implemented the SEALANT Client as a web
application, using HTML5 with the off-the-shelf JavaScript
libraries that include jQuery [19] for event handling web pages,
Bootstrap [20] for developing a responsive web application,
and D3 [21] for a data-driven visualization. The size of the
SEALANT Client is approximately 4,500 LOC. We extended
the display notation for the SEALANT Client by specifying a
meta-model in D3. The notation includes the essential elements
representing Android app architectures (i.e., components, apps,
and ICC paths).
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IV. KEY TOOL FEATURES

SEALANT’s key features are intended to automatically
identify ICC vulnerabilities among a given set of apps and
effectively deliver the identified information to users. The
features also enable users to assess each identified vulnerable
ICC path, selectively focus on particular architectural elements
(e.g., paths, components, or apps), and reuse prior analysis
results. The features that can be accessed via the SEALANT
Client are shown in Figure 3.

Automated Detection of Vulnerabilities. Given a set of
APK files or app models from prior analyses, SEALANT
automatically processes the detection of inter-app vulnerabil-
ities. The entire detection process takes place in the back-
end. During the process, progress bars display the status of
each analysis step (i.e., extraction of architectural information
and identification of vulnerable ICC paths). Once the analysis
is completed, SEALANT provides options for exporting the
identified vulnerabilities in a textual format or visualizing them
in pre-defined notations.

Visualization of Architecture and Vulnerabilities. To
effectively visualize a number of components in Android
apps, SEALANT displays the integrated and compositional
view of target apps as shown in Figure 3(a). SEALANT depicts
each component as a labeled dot, each app as a cluster of
components, and each ICC path between a pair of components
as a gray line connecting the respective dots. The vulnerable
ICC paths are presented as colored lines, with different colors
for each vulnerability type: intent spoofing is red, unauthorized
intent receipt is blue, and privilege escalation is green. A user
can customize display options such as font size, display size,
and line tension. As part of the visualization feature, if a
user hovers the pointer over an app or a component name,
SEALANT shows its detailed information, such as type, intent
filters, and permissions. As shown in Figure 3(b), SEALANT
also presents detailed information for each vulnerable ICC
path, and a user can assess whether a given path is indeed
unsafe or not. The user assessments can provide a reference
point for future analyses, as detailed below.

Selective Visualization. For a set of apps that contain a
large number of components and ICC paths, displaying all the
components and paths may be incomprehensible to users. To
handle this, SEALANT provides a selective visualization that
allows a user to focus on a particular set of apps, components,
or vulnerabilities. For example, if a user clicks on a desired
component’s name, SEALANT highlights the ICC paths (and
the corresponding components) that are connected to it, and
fades out the other parts. SEALANT also enables users to
choose different visualization types that use different notations
and topologies.

Reuse of Prior Analyses. When apps are installed or
updated, rerunning the SEALANT Analyzer is required to
identify vulnerable paths in the new ICC graph. To effectively
handle this, SEALANT supports reusing prior analysis results
by maintaining the models for apps and vulnerable ICC paths,
respectively. Whenever the analysis is requested, SEALANT

automatically checks if the same apps’ models or corresponding
vulnerable ICC path information exist in its Repository.
Consequently, the analysis time will primarily depend on the
number of newly analyzed apps.

V. EVALUATION

In this section, we evaluate SEALANT’s accuracy, scalability,
performance, and usability.

Accuracy. Our prior research [11] has evaluated accuracy
of SEALANT in terms of detecting vulnerable ICC paths from
real-world apps. Specifically, we created a test suite comprising
the apps from existing benchmarks and externally developed
apps [7], [22] (in total, 135 apps with 59 vulnerable ICC paths).
From the test suite, SEALANT detected vulnerable ICC paths
with 100% precision2 and 95% recall3, both of which are
higher than those of existing tools (SEPAR [7]: 50% and 8%,
respectively; IccTA [6]: 100% and 8%, respectively).

Scalability. To evaluate SEALANT’s scalability, we extended
the above test suite by randomly including apps from public
sources [23], [24]. The selected 1,150 apps were divided into
23 non-overlapping bundles comprising 50 apps each. These
bundles are larger than the number of apps an average Android
user is shown to regularly use each month [25]. From the
bundles, SEALANT flagged 86 ICC paths with 93% precision.
The results demonstrated that SEALANT successfully works on
representative sets of real-world apps with improved scalability
as compared to existing tools.

Performance. We evaluated SEALANT’s performance in
detecting vulnerable ICC paths [11]. From the extended test
suite used above, we randomly selected four categories of ten
different bundles of apps. A category comprised 25, 50, 75, or
100 apps. As shown in Figure 4, since SEALANT maintains a
summary-based model of each app, as expected the analysis
time scaled linearly with the number of apps and components.
On average, extracting architectural information from each app
took 77.95s and identifying vulnerable ICC paths took 1.08s
per app. Although the extraction is relatively time-consuming,
SEALANT’s feature for reusing prior analysis can reduce up
to 98.63% of the analysis time in subsequent analyses.

Usability. To confirm that SEALANT’s visualization helps the
users’ understanding of inter-app vulnerabilities, we conducted
a user study. Our participants included 30 computer science
graduate students at the University of Southern California,
recruited via an e-mail list. The background survey indicated
that 25 of the participants (83.33%) used Android as their
primary mobile platform while the remaining 5 (16.67%) had
prior experience using it. The analysis results of vulnerable
ICC paths (of ten Android apps that form five inter-app
vulnerabilities) were given to each participant via two different
representation methods: a textual list and SEALANT’s visualiza-
tion. Participants were asked to evaluate the level of difficulty in
understanding vulnerabilities for each method, using a 7-point
Likert scale (1 = very difficult, 7 = very easy). We also asked

2Precision: the ratio of vulnerable ICC paths to identified ICC paths.
3Recall: the ratio of identified to all vulnerable ICC paths.
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Fig. 3: Two Different Screenshots of SEALANT’s User Interface
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Fig. 4: SEALANT’s Performance on Different Numbers of Apps
and Components

them about the factors that affected their evaluation. According
to the responses, the mean degrees of SEALANT’s visualization
(Mean = 5.43, Std. = 1.66) was higher than that of textual
representation (Mean = 2.82, Std. = 1.60). The factors that affect
their preference for SEALANT’s visualization were intuitiveness
(54.55%), ease of understanding (31.82%), compositional
view (9.09%), and others (4.54%). The results support the
conclusion that SEALANT’s visualization successfully aids a
user’s understanding of inter-app vulnerabilities.

VI. RELATED WORK

ICC analysis is used to detect Android’s inter-app vulnera-
bilities. Although AmanDroid [9] identifies privacy leaks by
tracking interactions between components, it has shown its
inaccuracy when it comes to Content Provider components and
certain ICC methods. IccTA [6] detects privacy leaks between
components using a taint-flow analysis. While its bytecode
instrumentation resolves the ICC paths between components,
it is not scalable to a large number of apps. COVERT [10]
introduces a compositional analysis of a set of apps to identify
permission leakage. However, it does not target other types of
inter-app attacks, such as unauthorized intent receipt.

ICC visualization is employed to aid understanding the
systems that use ICC mechanism. ViVA [12] is our prior
visualization and analysis tool for event-based systems, which
visualizes a target system’s architectural information, message-
based dependencies between components, and runtime message
exchanges. However, it neither detects inter-app vulnerabilities
nor supports Android. Although COVERT has a feature that
visualizes its vulnerability analysis results, it does not support
a compositional visualization of a large number of apps or a
dynamic user interface.

VII. CONCLUSION

Our experimental results of applying SEALANT to hundreds
of real-world Android apps have demonstrated that it accurately
identifies vulnerable ICC paths. Our user study also has
shown that it successfully aids users in understanding the
identified vulnerabilities. We plan to extend SEALANT to
support other types of inter-app attacks that exploit covert
channels in the Android core system components, such as
the file system. Another potential direction for future work is
evaluating different types of displays (e.g., different notations
and colors) to find the most efficient way of delivering Android
inter-app vulnerabilities.
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