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Abstract—Designing usable APIs is critical to developers’
productivity and software quality, but is quite difficult. One of
the challenges is that anticipating API usability barriers and real-
world usage is difficult, due to a lack of automated approaches
to mine usability data at scale. In this paper, we focus on
one particular grievance that developers repeatedly express in
online discussions about APIs: “boilerplate code.” We investigate
what properties make code count as boilerplate, the reasons for
boilerplate, and how programmers can reduce the need for it. We
then present MARBLE, a novel approach to automatically mine
boilerplate code candidates from API client code repositories.
MARBLE adapts existing techniques, including an API usage
mining algorithm, an AST comparison algorithm, and a graph
partitioning algorithm. We evaluate MARBLE with 13 Java APIs,
and show that our approach successfully identifies both already-
known and new API-related boilerplate code instances.

I. INTRODUCTION

Almost all modern software programs adopt and use a
large number of APIs. Therefore, dimensions of API us-
ability, including learnability, effectiveness of use, and error-
proneness, are increasingly becoming significant concerns for
API designers [1]–[3]. To investigate API usability issues and
to improve APIs, researchers have used several methods such
as lab studies [4] and API design reviews [5], [6]. The un-
derstanding gained from such studies, along with the insights
from experienced API designers, have led to the development
of guidelines for API designs and heuristics for evaluating
APIs [1]–[3], [7]. However, despite these efforts, many APIs
are still difficult to use [8]. In particular, API designers have
reported that anticipating how developers will use their API
in the wild is difficult and leads to usability challenges when
developers use the API in unexpected ways [7]. API designers
have also reported significant trouble discovering what are the
usability barriers at scale [7]. Although online sources such
as Stack Overflow and GITHUB may contain ample amounts
of real client code or insights into how programmers perceive
APIs, designers report that there are not so many automated
approaches to mine usability data from these repositories at
scale, nor to gauge the severity of the usability issues [7].

In contrast, mining software repositories techniques have
long been used to identify API usage patterns [10]. For
example, existing API usage pattern mining tools such as
ExampleCheck [11], [12] and PAM [13] automatically identify
API methods that are frequently called together in client code.

1import org.w3c.dom.∗;
2import java.io.∗;
3import javax.xml.transform.∗;
4import javax.xml.transform.dom.∗;
5import javax.xml.transform.stream.∗;
6
7// DOM code to write an XML document to a specified output stream.
8private static final void writeDoc(Document doc, OutputStream out) throws

↪→ IOException{
9try {
10Transformer t = TransformerFactory.newInstance().newTransformer();
11t.setOutputProperty(OutputKeys.DOCTYPE SYSTEM, doc.getDoctype().

↪→ getSystemId());
12t.transform(new DOMSource(doc), new StreamResult(out));
13}
14catch(TransformerException e) {
15throw new AssertionError(e); // Can’t happen!
16}
17}

Listing 1. Writing an XML document to a specified output stream in Java may
involve significant boilerplate code for initialization and error handling [9].

Primarily, these tools have been designed to help users learn
a new API, by identifying idiomatic usage examples, as well
as to help API designers gain insights into how their APIs
are being used. In this paper we argue that API usage pattern
mining tools may also help reveal certain API usability issues.

Specifically, we focus on one particular grievance that
developers express repeatedly [14]–[17] in online discussions
about APIs (and programming languages more generally):
boilerplate code. Wikipedia [18] refers to boilerplate as “sec-
tions of code that have to be included in many places with little
or no alteration”, and code “the programmer must write a lot
of to do minimal jobs.” One Stack Overflow user [17] calls
boilerplate “any seemingly repetitive code that shows up again
and again in order to get some result that seems like it ought to
be much simpler”; most users agree that boilerplate is tiresome
to write and error-prone [14]–[16]. Listing 1 shows a typical
example: Whenever one wants to write an XML document to
a specified output stream in Java, which is a common usage
scenario, this requires significant boilerplate code. One could
imagine that this use case could be accomplished natively by
calling a single API method such as writeXML.

From an API designer’s perspective, the existence of boil-
erplate code may serve as an indicator of poor API usability.
This is because the need for boilerplate code often indicates
that the API does not directly provide the methods that
programmers need, so the extra code is needed to do even



common tasks. Another cause may be that the API designers
assume users will need the flexibility to put things together
in multiple ways, but most users do not, so everyone uses
the same collection of methods in the same way [19]. Users
may also use boilerplate code even though there are already
implemented API methods that can succinctly perform the
task, which indicates discoverability problems [19].

However, despite general consensus on the undesirability of
having to write boilerplate code, as well as API design guide-
lines explicitly mentioning boilerplate as an anti-pattern [1]–
[3], the concept remains largely undefined and understudied.
We start by reviewing boilerplate code examples and defini-
tions from multiple sources (Section III). Through qualitative
analysis, we confirm that boilerplate involves sections of code
that have to be written repetitively to accomplish common
and otherwise simple tasks that users largely do not want
to think about. Moreover, we find that the main reasons for
boilerplate code are underlying language and API limitations.
We also find that developers and API contributors make efforts
to reduce the amount of boilerplate code by introducing new
helper functions and abstractions.

Next, we present MARBLE (Mining API Repositories for
Boilerplate Lessening Effort), an automated technique for
identifying instances of boilerplate API client code. Since
a key property of boilerplate is that it is repetitive, we
designed MARBLE on top of an existing API usage pattern
mining approach, specifically PAM [13], which is automated
and can be run at scale. However, not all idiomatic API
usage patterns that an approach like PAM extracts, of which
there are typically many, should be considered boilerplate.
Therefore, we developed novel filters using AST comparison
and graph partitioning (Section IV) to identify, among the
frequent API usage patterns, those which are most likely to
involve boilerplate. By reducing the number of false positives,
API designers could then focus manual review on the most
likely candidates. The source code of MARBLE is available
online [20].

We evaluated MARBLE on 13 Java APIs, for which we
mined around 10,000 client code files from GITHUB open-
source projects, with 768 client code files per library on
average after random sampling. Our results (Section V) show
that not only does MARBLE return a sufficiently short list of
boilerplate candidates for manual review to be feasible, but
also that more than half of these candidates are considered
boilerplate by two experienced Java programmers (the first and
third authors of this paper), where the third author is an API
designer at a large software company. To further the discussion
about what boilerplate is and how it impacts APIs, we discuss
some of the boilerplate candidates and suggest potential API
design improvements. The full list of boilerplate candidates
mined is available online [20].

Note that we are not claiming that all boilerplate code is bad,
or that boilerplate code should always be eliminated. In fact,
some of the patterns we identified as boilerplate are important
to leave as-is to achieve other code quality requirements, such
as increased readability or separation of concerns. However,

as has been proposed elsewhere [8], we argue that these kinds
of API design decisions are best made with full knowledge of
the tradeoffs. We argue that MARBLE provides data which
may be used in practice by API designers as a basis for such
discussions. We also recognize that our method, like any other
data-mining approach, is only applicable after an API has
sufficient client code using it, and is therefore complementary
to lab studies and API design reviews.

In summary, we contribute: i) the boilerplate API code
mining problem; ii) properties which can be used to identify
boilerplate code; iii) an automatic boilerplate code mining
algorithm; iv) an empirical evaluation on 13 Java libraries.

II. RELATED WORK

To our knowledge, our work is the first to automatically
mine potential boilerplate code instances from software
repositories. We contribute to the literature on API usability,
which serves as the motivation for our work, and API usage
pattern mining. Our work is also related to code clone detec-
tion, which can be helpful for identifying some API usability
problems, but has limitations for boilerplate code mining.

A. API Usability Studies

Previous research and industrial work have sought to aid
API designers in creating more intuitive, learnable, and us-
able APIs (see, e.g., [2], [8] for surveys). Researchers have
investigated ways of evaluating API usability in lab-based
studies, including diagramming the concepts used in the API,
and combining interviewing and observational studies during
a programming task [5], [21], [22]. While these methods have
been successful in the lab, it remains unclear how they might
scale for evaluating larger APIs.

Peer reviews are also often used to evaluate APIs [6], [7].
For example, Macvean et al. [6] developed a peer review
process at Google called “Apiness” that assigns two reviewers
to asynchronously provide feedback on the API’s design.
While this approach has proven to be effective at Google,
it requires a level of expertise for both the API reviewer and
API designer, which may not be available. Moreover, such
approaches are mainly designed to be used before the API
is released, therefore, they are not ideal to identify potential
usability issues of the API in client code at scale, after an API
has been released.

There are also many publications that discuss general API
design processes and guidelines [1], [3], [7], [19], [23], [24],
but these still require expertise in API design, and the methods
introduced in those articles may be hard to operationalize [1],
[19], [23]. Heuristics are also used to evaluate APIs after their
creation [25], [26], sometimes automatically [27], [28].

B. Mining API Usage Patterns

Significant previous research has addressed mining of API
usage patterns, which has proven to be useful for detect-
ing both correct and incorrect API uses [10]. API misuse
detectors [29]–[32] automatically mine incorrect uses of an
API which deviate from normal patterns. However, these



algorithms focus on detecting potential anomalies or bugs in
the programs, mainly mistakes made by developers, rather than
focusing on the design of the API itself.

There are also algorithms for automatically mining API
usage patterns which identify API methods that are frequently
called together [11], [13], [33], [34]. For example, PAM [13]
uses a probabilistic model and an expectation maximization
algorithm to mine sequences of API calls that are not only
frequent, but also occur more often together in a sequence than
would be expected by chance. ExampleCheck [33] uses the
closed frequent sequence mining algorithm BIDE [35] com-
bined with an SMT solver, to mine API usage patterns as well
as guard conditions that protect an API call. However, while
these algorithms can help users learn APIs more effectively,
they are not very useful for API designers, in that it is hard to
filter out which instances are directly related to API usability
issues given the long list of API usage patterns they return.

Particularly noteworthy is Google’s StopMotion tool [36],
which focuses on identifying API usability issues in a scalable
fashion by analyzing the developers’ work history. StopMotion
analyzes editor logs from developers, focusing specifically
on instances where code edits relate to API method usage.
Although this approach is able to identify instances of usability
issues from client code, it currently only considers changes
made for a single method call. It is therefore not ideal for
capturing usability issues involving multiple API calls in
a block of code, or identifying code which surrounds API
method calls, namely boilerplate code.

C. Code Clone Detectors

Code clones have long been regarded as harmful to a
system’s design, so researchers have studied them extensively,
including their causes [37] and detection algorithms [38], [39].
Kapser and Godfrey [37] found that some code clones are
caused by limitations of the programming language [37]. Kim
et al. [40] further found that programming language limitations
partially explain why many long lived clones are not easily
refactored. This suggests that API design issues could be
identifiable in client code, among the code clones.

There are also approaches to detect code clones from large
code bases that could potentially be used to identify clones
indicative of API design issues, given a large repository of
client code. Deckard [41] is a tree-based code clone detection
algorithm that measures the similarity of subtrees in syntac-
tic representations. Deckard clusters “characteristic vectors”
which are transformed from parse trees of the source code,
to detect code clones based on this clustering. More recently,
White et al. [42] devised a learning-based code clone detection
technique that uses deep learning, by training an autoencoder
to encode the lexical level information and syntactic level
information into vector representations, and match them to
detect the code clones. SourcererCC [39], on the other hand,
uses a bag-of-tokens technique to detect Type-3 clones. It
exploits an optimized inverted-index and filtering heuristics to
quickly query the clone candidates with less computation for
more scalable clone detection within large codebases. Both of

these detectors successfully find code clones and scale well.
However, these techniques are designed to detect all kinds
of clones, not just API-related or boilerplate-related ones.
Therefore, false positive rates for boilerplate candidates would
likely be high and additional filtering would be needed to
identify the clones indicative of API design issues. We choose
to base our boilerplate approach on automatic API usage
pattern mining techniques rather than code clone detection
tools, since the former are specifically designed for APIs,
which we expect would require less filtering of false positive
boilerplate candidates.

III. STUDYING BOILERPLATE CODE

As far as we have been able to find, studies of boilerplate
code, or studies that even mention boilerplate code, are scarce
(exceptions include [3], [9], [37], [43]). Mostly we have found
it to be “I-know-it-when-I-see-it,” with the existing explana-
tions being vague and abstract, rather than deterministic.

At the same time, although boilerplate code is regarded as
something that programmers want to avoid [14]–[16], and API
design guidelines suggest that API designers should reduce the
need for boilerplate code [1]–[3], we still have not seen any
studies of whether some boilerplate code is induced by APIs,
and if so, whether it is possible to reduce it at the API level.

Thus, to help understand the characteristics of boilerplate
code, and the impact of API design on the need for boilerplate
in client code, we first investigated three research questions:
• RQ1: What is a good definition and what are common

properties of boilerplate code?
• RQ2: What are reasons for needing boilerplate code?
• RQ3: How do API users and API authors deal with

boilerplate code?

A. Resources

We reviewed the literature, surveyed our social media con-
tacts, and reviewed Stack Overflow questions and GITHUB
commits. Mainly, we looked for boilerplate code examples,
but when available, we also collected the rationale behind
the boilerplate designation, reasons for the boilerplate, and
how programmers dealt with boilerplate. We looked for Java
boilerplate code examples involving at least one API call. We
chose Java because the API usage pattern mining technique we
build on (Section IV) was tested for Java. In some communities
(e.g., web developers), boilerplate code is used as a synonym
for template code [44], but we exclude this context as we are
looking for boilerplate related to API usability.

1) Literature: We searched for definitions or explanations
of boilerplate code in Google Scholar [3], [9], [37], blog posts,
online discussion boards (e.g., reddit) and Wikipedia. When
available, we also collected boilerplate code examples.

2) Survey: We asked our Twitter contacts to share boil-
erplate code examples and the reasons behind the boilerplate
designation. Overall, 8 participants submitted 1 to 3 boilerplate
examples each and all provided the reason why they thought
each example qualifies as boilerplate.



3) Stack Overflow: The first author identified five popular
Java API tags (android, swing, jdbc, spring-mvc, jsp)
in Stack Overflow and manually collected questions asking
about how to reduce boilerplate code, using Stack Overflow
search queries (e.g., “[Swing] boilerplate”). We checked the
first page (15 questions) of the results for each Java API tag,
and collected boilerplate code examples and the reasons why
the questioner thought it was boilerplate.

4) GitHub Commits: We identified and cloned the top
10,000 most starred Java repositories from GITHUB, using the
March 2018 version of GHTorrent (details in Section V). Then,
we identified all commits including the keyword “boilerplate”
in the commit message. Finally, the first and second authors
manually coded all the matching commits.

B. RQ1: What is a good definition and what are common
properties of boilerplate code?

We investigated the available definitions of boilerplate code
from the literature, and iteratively discussed the boilerplate
examples among the research team (which includes an ex-
perienced API designer in a large software company, who is
often involved in large software projects using APIs), distilling
common properties. We did not use GITHUB commit data
in this analysis because (1) it does not explicitly express the
characteristics of boilerplate, and (2) it does not indicate the
exact location of boilerplate code in many of the code changes.

1) Undesirable: Commonly, boilerplate code is identified
using subjective properties, sometimes explicitly: “It’s a sub-
jective definition” [17]. Mostly, such properties have negative
connotations. One source calls it “uninteresting, unchanging,
repetitive, and/or tedious” [45]. Another common but subjec-
tive property is that boilerplate code is needed even for simple
functionality. The highest voted answer from Stack Overflow
defines it as “it ought to be much simpler” [17]. We summarize
all of these properties as being “undesirable.”

2) High frequency: Most of the definitions and explanations
require that boilerplate code occurs frequently in client code,
such as “shows up again and again” [17], or “code that
has to be included in many places” [18]. Frequency is a
particularly intuitive property given the negative connotation
of boilerplate code: indeed, if it were rare, its impact would
likely be reduced. The high frequency property also implies
that boilerplate API code examples should be found among
idiomatic API code examples, as the latter are by definition
frequent, hence our choice to base our approach on an existing
API usage pattern mining tool [13].

3) Localized: The statements constituting boilerplate code
are usually closely located near each other, rather than spread
over multiple methods or files. All examples from Stack
Overflow and the survey, and three examples from Google
Scholar [3], [9], [37] were parts of a single method. The
Wikipedia example of getters and setters within a class [18]
is the only one not limited to a single method.

4) Little structural variation: The boilerplate code in-
stances appear in similar form without significant variation.
Many sources describe that it “gets copied and pasted” [3], and

is used “with little or no alteration” [18]. We also found that
many explanations of boilerplate code describe the examples
as “I find myself writing the same ugly boilerplate code” [46],
or “a lot of code that must be duplicated” [47].

In fact, this corresponds to the definition of code clones,
especially “templating clones” [37]. However, while code
clones need not occur with high frequency to be considered
clones, boilerplate should occur frequently (Property 2).

C. RQ2: What are reasons for needing boilerplate code?

1) Method: The first and second authors performed closed
coding for all of the boilerplate related commits we collected
from GITHUB. As one property of boilerplate code (RQ1

Property 4) corresponds to a subcategory of code clones,
we borrowed Roy and Cordy’s “reasons for cloning” [48]
as our starting set of codes: development strategy (reuse ap-
proach, programming approach), maintenance benefits (avoid-
ing, ensuring, reflecting), overcoming underlying limitations
(language limitations, programmers’ limitations), and cloning
by accident (protocols to interact with APIs and libraries, pro-
grammers’ working style). As there were commits referring to
different types of boilerplate (e.g., boilerplate license), we also
coded the commits with types of boilerplate: boilerplate, client
(i.e., reduce the boilerplate code using the API), comment
(i.e., boilerplate in the comments such as license, javadoc),
and Non-Java. Each commit was assigned one type and one
reason based on its commit message and code diffs. The first
and second authors started coding collaboratively and, after 10
agreements, each separately coded half of the data. In total, we
randomly sampled and coded 120 commits, and the two coders
reached 87.5% agreement (Jaccard Index) both for boilerplate
types and for reasons, on 20% of the data.

2) Results: Among 120 commits, 40 of them were commits
to reduce the use of boilerplate code. We found that the
predominant reason for needing boilerplate was overcoming
underlying language limitations (mentioned in 19 commits).
Examples of this include needing to initialize many getters/set-
ters and verbose error handling in Java. 11 were induced in
order to interact with APIs, for example, tagged as “Protocols
to interact with APIs”. Some of the boilerplate code was due
to questionable API designs (e.g., requiring the client to cast
the output by providing an abstract object), but some seemed
inevitable due to the design patterns or apparent trade-offs in
the design of the APIs. For example, an API adopting a builder
pattern usually involves a lot of boilerplate to set properties
of an object. Another 10 were due to programmers using the
API inefficiently, such as using an API call which is not ideal
that requires more code.

Since most of boilerplate code instances are by-products of
language and API limitations, analyzing boilerplate code can
help review their designs and find usability issues. Despite
some of the limitations being unavoidable, such as error
handling in Java, there are many other situations where API
designers can reduce the need for boilerplate, such as by
adopting annotation libraries or introducing helper functions.
Boilerplate code due to programmers using the API ineffi-



ciently may be a signal that there are discoverability issues,
so the documentation and tutorials might need to be improved
to overcome the conceptional gap between the API designers
and API users.

Note that while we were able to code every boilerplate
instance with codes from “reasons for code cloning” [48],
which indicates that boilerplate can be considered a type
of code clone, the two are not identical, as clearly not all
code clones can be considered boilerplate under our definition
(high frequency, localized, API related). Therefore, while
our approach to automatically mine boilerplate candidates
(Section IV) starts from an existing API usage pattern miner,
future work could also consider boilerplate mining approaches
that start from code clone detectors, but exploring this goes
beyond the scope of the current work.

D. RQ3: How do programmers and API contributors deal
with boilerplate code?

1) Method: To answer RQ3, the first and second authors
performed descriptive coding on the changes that were made
to reduce the amount of boilerplate code – either boilerplate
within the source code itself, or boilerplate that is needed by
the client to use the library. We used the same 40 boilerplate
instances found in commits from RQ2 (i.e., attempts to reduce
the boilerplate code by editing the project code), and 6
commits that changed the API itself (i.e., attempts to reduce
the boilerplate code using the API). We coded based on the
code diffs and commit messages, and extracted the means used
to reduce boilerplate code.

2) Results: The majority of boilerplate code reductions
within a project were made by introducing new helper func-
tions or classes, either by writing new ones, or by including
a function or class from an external API. For the simple
Java-specific boilerplate such as getters/setters, some used
annotations (e.g., Project Lombok [49]) or injection to reduce
the amount of boilerplate. When changing the API to reduce
the client-side boilerplate, programmers added more process-
ing into the library, thereby reducing the need for pre/post
processing for the input/output of API calls. Some made the
interfaces more specific to reduce the need for parsing or
casting in the client code. Also, like within-project boilerplate
reduction, some commits added a set of helper functions or
new classes to allow users to have a more specific but simpler
interface, which can usually be done without making breaking
changes to the API.

IV. MINING BOILERPLATE CODE

Using the results from the previous section (Section III-B),
we seek to find code instances that contain calls to a target
API and satisfy the properties of boilerplate code we identi-
fied: (1) are undesirable, (2) occur frequently in client code,
(3) occur within a relatively condensed area, and (4) are used
in similar forms without significant variations.

To this end, we designed MARBLE, which combines an
API usage pattern mining technique with a graph partitioning
algorithm to identify candidate boilerplate code from software

repositories. MARBLE consists of several steps, depicted in
Figure 1 and described below. In summary, we first identify
a large set of API usage patterns which represents our initial
set of boilerplate candidates. We then filter out any patterns
that are spread over multiple methods, or which have many
variants, to finally provide a short list of boilerplate candidates
that satisfy all of the properties above, except for Property 1
(undesirable). These candidates could then sorted and contex-
tualized with the real-world client code, and delivered to the
API designers so they can review the candidates for Property
1. We intentionally designed the process in this order because
testing Property 4 (little structural variation) is computationally
expensive. By filtering out the candidates that do not satisfy
the other properties, we are able to reduce the number of AST
comparisons (Section IV-C1).

A. API Usage Pattern Mining

We start from an existing API usage pattern mining tech-
nique, to collect boilerplate candidates containing one or multi-
ple target API calls and satisfying the high frequency property.
Specifically, we chose PAM (Probabilistic API Miner) [13], a
state-of-the-art parameter-free probabilistic approach, which is
fully automated and available open-source. In their evaluation,
Fowkes et al. [13] found that PAM returns less redundant and
less numerous results compared to other API usage pattern
mining algorithms the authors compared.

1) The PAM Core: PAM uses a probability model over
API call sequences to identify “interesting” sequences of API
calls / API usage patterns. Given a target API, the model
can be trained unsupervised on a corpus containing code
from open-source GITHUB repositories. Concretely, PAM first
parses each source file and extracts the sequence of target
API calls within each method (only Java code is currently
supported), using a depth-first traversal of the abstract syntax
tree (AST). At the same time, frequency information for
each API call over methods is recorded. For example, given
javax.xml.transform as a target API and Listing 1 as one
client method using it, PAM’s API call extractor returns

• javax.xml.transform.TransformerFactory.newInstance
• javax.xml.transform.TransformerFactory
.newTransformer

• javax.xml.transform.Transformer
.setOutputProperty

• javax.xml.transform.dom.DOMSource.<init>
• javax.xml.transform.stream.StreamResult.<init>
• javax.xml.transform.Transformer.transform

Then, PAM uses expectation-maximization (EM) [50] to it-
eratively infer “interesting” API usage patterns (i.e., sequences
of API calls) and learn the probability model. That is, an API
call sequence [A, B] is “interesting” if the two API calls A

and B occur together more often than expected by chance,
given the individual frequencies of A and B. The EM algorithm
iteratively interleaves API call sequences, and searches for the
set of patterns that maximizes the probability that the model
assigns to all client methods in the input dataset. For more
details we refer to the original paper by Fowkes et al. [13].

PAM returns a ranked list of API usage patterns
P = [P1, P2, . . . , Pn], where Pi = [c1, c2, . . . , cm], is an
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Fig. 1. Overview of our mining process and the steps involved.

API call sequence. For example, when we run PAM on
javax.xml.transform, it returns:

• P1 = [javax.xml.transform.dom.DOMSource.<init>,
javax.xml.transform.stream.StreamResult.<init>]

• P2 = [javax.xml.transform.TransformerFactory.
newTransformer,
javax.xml.transform.Transformer.transform]

• P3 = [javax.xml.transform.dom.DOMSource.<init>]
• P4 = . . .

2) Modifications to the PAM Core: As our main goal is
to help API designers identify the patterns that are likely
to reflect API usability issues, the list of candidates to be
considered must be relatively short, since such reasoning
requires designers’ manual effort. We modified the base PAM
algorithm to reduce the number of false positive boilerplate
patterns returned. This step involved setting two thresholds
empirically, which we did after reviewing a sample of PAM
results: First, if there is a pair of patterns such that one fully
contains the other (e.g., P1 and P3 above), we remove the
sub-pattern (P3) unless the number of occurrences is more
than 50% different from its super-pattern’s, to avoid reporting
multiple small variations of one boilerplate candidate. For
example, if there is a sequence [a, b, c] which occurred
100 times among the client code files and another sequence
[a, b] occurred 120 times, we keep [a, b, c] and ignore
[a, b] because a, b, and c are mostly used all together.
However if [a, b] occurred 500 times, we do not ignore it
because it is likely that there are other uses not involving c.
Second, to avoid reporting rare and project-specific boilerplate
code candidates, we also ignore patterns that occurred in less
than 5% of client code methods for a given API.

3) Limitations: The returned API usage patterns are se-
quences of API calls, without any structural information. This
ensures that the returned patterns are robust to variations in
local context, e.g., conditionals, loops, exception handling,
etc., which is desirable when the goal is mining generic
API usage examples. However, this is at odds with our third
boilerplate requirement that the call sequence should appear
in similar form without significant variation.

Another limitation of PAM for boilerplate mining is that
the order of API calls matters. When a boilerplate instance
involves multiple API calls that can be used in any order,

such as getHeight() and getWidth(), PAM would con-
sider [getHeight(), getWidth()] and [getWidth(),

getHeight()] to be different sequences, and the “interest-
ingness” of this API usage would be lower than it should be.

Finally, PAM was originally designed to capture the usage
patterns of a single library, whereas API usage patterns or
boilerplate can have multiple libraries involved.

We address these limitations in the following steps, by
also considering the context around the “interesting” API call
sequences.

B. AST Extraction

To decide whether an “interesting” API usage pattern in-
volves boilerplate, we should also consider the (structural)
context around the API calls. For example, if other methods
(e.g., built-in language APIs) are always used around or
between the target API calls, or if the sequence of target API
calls is always used inside a certain loop construct, we should
also consider this context as part of the candidate boilerplate
instance. Therefore, to determine this context, given a list of
API usage patterns and a list of client code files containing
instances of those patterns [(P1, F1), (P2, F2), . . . , (Pn, Fn)],
respectively, for each Pi we extract and post-process the ASTs
of the files in Fi. Moreover, since we are only interested in
code that occurs in local areas (Property 3 above), i.e., the
areas around the target API calls, we restrict this analysis
to individual methods and split the file-level ASTs (which
correspond to entire classes) into method-level subtrees.

Still, the method-level AST subtrees may contain
nodes unrelated to target API calls and the candidate
boilerplate pattern. To narrow down the relevant parts of
the method-level AST subtrees S, we use a simple slicing
heuristic: we extract the smallest sub-subtrees of each
subtree S, which completely encompass the target API
call pattern. For example, given an AST of the client code
in Listing 1 (Figure 2) and an API usage pattern P =
[javax.xml.transform.dom.DOMSource.<init>,

javax.xml.transform.stream.StreamResult.<init>],
we extract the first common ancestor of the DOMSource and
StreamResult nodes, i.e., the subtree rooted at Method

Invocation.
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Fig. 2. A part of the AST for the code in Listing 1 and the ex-
tracted subtree (colored) for the API usage pattern [DOMSource.<init>,
StreamResult.<init>] using our slicing heuristic.

For patterns with a single API call, the smallest subtree
is the same as the API call, which means we do not ac-
quire further contextual information. Therefore, we modify
the smallest subtree heuristic for these patterns, and find
the smallest if/loop/try subtree containing the API call.
However, this heuristic may not always extract a smaller
subtree than the entire method (e.g., if no if/loop/try is used
in the method). Based on the third property that statements
constituting boilerplate code are closely located near each
other, we applied another heuristic: when the subtree has
over 20 method invocations, trim the sub-subtrees that are
far from the sub-subtrees containing the API calls. We chose
the threshold 20 informed by the examples collected from the
qualitative study in Section III.

If an API call of a pattern occurred multiple times in a client
file, there might be multiple potential subtrees. In this case, we
use the smallest one, following Property 3: the further the calls
are apart, the less probable it is that they form a single pattern.
In the case that the full smallest pattern occurs multiple times
in a client code file, we keep multiple subtrees.

C. Graph Partitioning

As the third step in our approach, we check Property 4:
whether the API call sequence is used consistently in similar
contexts (i.e., structures) throughout the client code.

To capture this property, we devise an approach to 1) com-
pute the similarity between all pairs of subtrees containing the
API call sequence contexts; and 2) cluster together similar sub-
trees. Intuitively, if there are many clusters with low similarity,
this indicates that there are many different ways a sequence
of API calls is being used at the code level, suggesting that
the pattern is less likely to be a part of boilerplate, as per
Property 4. In contrast, if there is a cluster having a number
of subtrees, and the similarity between them is high, the cluster
(i.e., specific use case) can be a boilerplate candidate.

1) Pairwise Similarity: Given a list of subtrees for each
client file in Fi containing a same API pattern P , we compare
every pair of subtree lists from 〈fi, fj〉 in Fi, and calculate
the similarity between them. We use AP-TED (All Path Tree
Edit Distance) [51] as our distance/inverse similarity measure,
since it is memory efficient and fast. Other tree differencing
algorithms such as GumTree [52] could be applied as well.

To calculate the AP-TED, we visit each subtree in pre-
order, collecting the types of each node (e.g., MethodDec-
laration or IfStatement). To avoid noise from lexical details,
such as variable names, we only collect nodes for: loops

(e.g., ForStatement), error handling (e.g., TryStatement), con-
ditions (e.g., IfStatement), casts, and method invocation types.
For the MethodInvocation nodes, we also collect the names
(e.g., newInstance) to compare different API calls used in
the boilerplate candidate. To overcome PAM’s limitation that
it only considers the usage patterns of one target API, we also
collect the names of method invocations that are not from the
target API. By doing this, even though PAM is not able to
capture external API calls as part of a sequence, our approach
can still use them to calculate the similarity, and the external
calls will be seen in the boilerplate candidate if they frequently
occur together with the target library’s API calls. It also helps
mitigate PAM’s other limitation—not capturing a set of API
calls into a usage pattern unless they occur in the same order.

To calculate the similarity using the tree edit distance, we
invented TES , the Tree Edit Similarity. When s is a list of
subtrees in f , each of which encompass the target API, given
two lists of subtrees 〈s1, s2〉 for 〈f1, f2〉, we define TES as:

TES (s1, s2) = max

(
1

eAP TED(s1i,s2j)·0.1

)
(1)

In the case that the client code file uses the pattern multiple
times so there are multiple subtrees for si, we calculate the
distance between every pair of subtrees, and use the maximum
value for the next step.

2) Clustering: With these pairwise similarity values, we
build a weighted graph for each pattern, in which nodes
ni are client code files, and edges ni → nj are weighted
by TES(ni, nj). We then cluster the nodes in this graph,
to capture the different contexts (structures) in which an
API call sequence is being used. As the similarity values
between client code files are computed based on the ASTs,
boilerplate candidates that are structurally similar would likely
be clustered together. On the other hand, even if the same
API calls are used in two client files, if their structures are
significantly different, or external API calls around the pattern
are significantly different (which the edge weight captures),
they would likely be clustered separately. Therefore, after
graph partitioning, the clusters would indicate structurally-
different usage patterns given a sequence of target API calls.

For clustering we use the Louvain community detection
algorithm [53], a heuristic method based on modularity op-
timization: Given a weighted graph of n nodes, Louvain first
assigns a different cluster to each node. Then, for each node
ni, Louvain calculates the gain in modularity by removing
ni from its cluster and placing it into its neighboring nj’s
cluster. If the gain is positive, and maximum among the gains
from other neighbor nodes, the algorithm removes ni’s cluster,
and merges ni into nj . The process repeats and is applied
until there is no further improvement in modularity. Secondly,
Louvain adjusts the weights of the edges. The weights of the
edges between the new clusters are the sum of the weights
of the edges between nodes in the corresponding two clusters.
The algorithm keeps iterating the first phase, merging clusters,
and second phase, adjusting weights, until a fixed point.



We applied this technique for three main reasons: (i) unlike
most other graph clustering algorithms for which the number
of clusters should be given as input, Louvain determines it as
part of the algorithm; (ii) its computation time is short; (iii) it
was originally designed for large networks (e.g., 118 million
nodes [53]), hence we expect it to scale up well.

3) Additional Filtering: The clustering algorithm does not
guarantee that within a cluster the client code instances of the
API usage pattern are all highly similar among each other,
i.e., that they all represent the same boilerplate candidate in-
stance. To further prune spurious clusters which may increase
noise in the results, we require that the average pairwise within
cluster similarity is greater than a threshold. Empirically, we
observed that patterns involving many API calls would have
more variance in the subtrees and thus the similarity would be
lower than short usage patterns, even though qualitatively they
would appear similar; therefore, when the pattern is longer,
the similarity threshold should be lower. We set this threshold
for average TES (Equation 1) to be 1/e2(x+1)·0.1, where x is
the number of API calls in the sequence. For example, when
a usage pattern contains only one API call, the threshold is
1/e(2·1+2)·0.1 = 0.67, i.e., we discard clusters with average
within-cluster similarity below 0.67.

D. Viewer

Since boilerplate code has the subjective properties dis-
cussed in Section III that cannot be automatically tested,
manual review of the candidates is necessary. To help API
designers efficiently review them, we implemented a viewer
for the boilerplate candidates. Based on the intuition that more
verbose boilerplate candidates should be reviewed first by
API designers, MARBLE’s viewer ranks all the boilerplate
candidates by their length, and for each one, displays usage
examples from three representative client code files from
different GITHUB projects.

V. EVALUATION

In this section, we evaluate the accuracy and potential
usefulness of our mining algorithm, by answering:
• RQ4 (Validation): How well does MARBLE identify

known boilerplate examples?
• RQ5 (Precision): How many of the boilerplate candidates

found by MARBLE would human experts agree with?
• RQ6 (Practicality): Does MARBLE return a reasonably

short list of boilerplate candidates for manual review?
• RQ7 (Usefulness): Does MARBLE identify informative

boilerplate candidates that could help review an API?
RQ4 is to test whether MARBLE finds the 13 boilerplate

examples corresponding to 13 Java APIs we collected from
the literature, survey, and Stack Overflow in Section III.

RQ5 evaluates MARBLE’s false positive rate. Quality as-
surance tools, such as defect prediction [54] or static analy-
sis [55], should generate few false warnings to be usable in
practice.

RQ6 evaluates MARBLE’s practicality. Reviewing boiler-
plate candidates and investigating potential usability issues

require manual effort from the API designers, as labelling
something as boilerplate is ultimately a judgement call. On
the same set of 13 APIs for which we collected 13 known
boilerplate examples, we evaluate whether MARBLE returns
a sufficiently short list of candidates in the right order, so
that it may be usable in practice. Specifically, we test to what
extent our filtering steps involving AST comparison and graph
partitioning (discussed above) will help to substantially reduce
and rank the list of candidates for manual review compared to
the baseline PAM [13].

RQ7 is to qualitatively evaluate MARBLE’s usefulness.
The first and third authors manually reviewed all the mined
boilerplate candidates for the same 13 APIs, and analyzed to
what extent the candidates signal places where the APIs might
be improved.

A. Experimental Setup

1) Dataset: To collect API client code, we identified and
cloned the top 10,000 most starred Java repositories from
GITHUB, using the March 2018 version of GHTorrent [56],
excluding forks and repositories marked as deleted. We then
mined the Java source files importing the APIs, by matching
import statements (e.g., import javax.xml.transform).
For APIs with more than 800 client code files, to reduce
the runtime of our experiments, we sampled files randomly,
ensuring 95% confidence level and 3% margin of error. Table I
gives an overview of our dataset.

Each row in the table is a separate API on which we ran
MARBLE, one API per each of the 13 known boilerplate
examples. The “API Patterns” column shows the number
of API usage patterns returned by just running PAM, and
the “Boilerplate Candidates” column shows the number of
boilerplate candidates that MARBLE identifies. The “Found
Known Boilerplate” column shows whether MARBLE found
the known examples. The “Precision” column shows the
percentage of boilerplate candidates that the first and third
authors labeled as actual boilerplate among the number of
the candidates that our approach retrieved for each API. The
“Client Files” column shows the number of client code files
that were used for boilerplate mining. The “Files w/ BP”
column shows the number of client code files that involve at
least one boilerplate instance. The “Avg. Len.” column shows
the average length of the boilerplate candidates. The precision
on the “Total” row is the micro-average precision; that is, the
average precision after aggregating the data of all libraries.

2) Implementation Details: For the API usage pattern
mining part (Section IV-A), we adjusted the output generation
part of PAM’s public implementation [57], without modifying
the core algorithm. We ran PAM using default parameter
settings: 10,000 iterations with a priority queue size limit of
100,000 candidates. For the AST comparison (Section IV-B),
we wrote a Java program to parse and traverse ASTs, and
extract subtrees with our heuristics. To compare the subtrees,
we used the apted library [58], but customized the cost model
to weigh insertion, deletion, and rename operation equally.



TABLE I
SUMMARY STATISTICS ON THE NUMBER OF CANDIDATE BOILERPLATE INSTANCES FOR THE APIS IN OUR DATASET.

API API
Patterns

Boilerplate
Candidates

Found Known
Boilerplate Precision Client Files Client w/ BP Avg. Len.

android.app.ProgressDialog 134 12 True 0.92 641 296 5.96
android.database.sqlite 508 7 True 0.57 796 96 7.49
android.support.v4.app.ActivityCompat 26 5 True 0.60 486 93 8.01
android.view.View 940 11 True 0.36 1,051 100 9.16
com.squareup.picasso 79 0 False - 565 - -
java.beans.PropertyChangeSupport 32 8 True 0.38 604 48 6.04
java.beans.PropertyChangeEvent 32 5 True1 0.00 749 - -
java.io.BufferedReader 39 3 True 0.67 998 343 3.52
java.sql.DriverManager 30 0 False - 744 - -
javax.swing.JFrame 185 0 False - 791 - -
javax.swing.SwingUtilities 71 2 False 0.50 800 14 6.64
javax.xml.parsers 196 3 True 1.00 893 39 11.23
javax.xml.transfrom 325 3 True 0.67 871 45 9.2

Total 2,597 59 0.69 0.56 9,989 1,074 6.06

1 During the evaluation, authors came to the conclusion that the known boilerplate instance for java.beans.PropertyChangeEvent from Stack
Overflow is not a strong boilerplate code. Therefore, even though MARBLE mined the similar pattern from the client code (Found Known Boilerplate: True),
none of the candidates from this library is labeled as boilerplate code (Precision: 0.00).

For the graph partitioning (Section IV-C), we wrote a Python
program to build a graph, preform graph partitioning using the
NetworkX package [59], and filter spurious clusters using our
heuristics. The final boilerplate candidate viewer generator for
the API designers is implement in Python, and generates a
html page for each API.

B. Results and Discussion
1) RQ4 (Validation): How well does MARBLE identify

known boilerplate examples?: We ran MARBLE on all 13
APIs represented in the discovered boilerplate examples (Ta-
ble I), and manually compared the returned candidates to the
known examples. Among the 13 known boilerplate examples,
MARBLE could identify 9 (69%).

Three out of four false negatives were not caught by
MARBLE because they incorporate a variety of real-code
(i.e., non-boilerplate code) inside them, like invokeLater in
javax.SwingUtilities. Although the boilerplate wrapping
the real-code was repetitive and the same for every usage, the
non-boilerplate part varied widely among the client code files,
which lowered the similarity between the client code AST
subtress containing this pattern. This could be improved in the
future by applying program analysis to more accurately slice
the API-call-related and unrelated parts of the code (we discuss
more in Section VI). eliminating irrelevant non-boilerplate
code by applying program analysis, and we discuss more in
Section VI.

Another false negative was a builder pattern, which MAR-
BLE did not identify because client code files used different
combinations of setter calls. A Stack Overflow user [60]
complained about this because the same builder was needed
multiple times within the project, which does not necessarily
mean that other programmers use it in the same way in other
projects. Since MARBLE’s goal is more general, to inform
API designers about potential boilerplate in a wide range of
client code, this example was not exactly in scope. However,

MARBLE could be extended to also identify these within-
project boilerplate examples if API designers feel the need, by
adding the within-project pattern frequency to the algorithm.

We conclude that MARBLE is valid.

2) RQ5 (Precision): How many of the boilerplate candi-
dates found by MARBLE would human experts agree with?:
MARBLE returned 59 boilerplate candidates overall for the
13 APIs in our sample (Table I). To compute MARBLE’s
precision, the first and third authors labelled each candidate
as potentially boilerplate or not. The authors first separately
labelled all of the candidates (77% inter-rater agreement),
then discussed disagreements until reaching consensus, finally
updating the labels. The main criteria for the boilerplate des-
ignation were whether it potentially reduces the API usability,
and whether it could be further abstracted.

As a limitation, note that we labelled some candidates as
false positives even though they resemble boilerplate (verbose
and seemingly abstractable), because we could not confirm
that these could significantly lower the API usability without
looking at the number of occurrences within a single file or a
single project, which goes beyond the scope of this work. As
discussed above, we designed MARBLE to identify boilerplate
candidates across a large number of client code files / projects
to help API designers focus on boilerplate that might affect
more users. However, while we were reviewing the candidates,
we found that within-project boilerplate might also impact API
usability. For example, as a programmer, it could be annoying
if three lines of an API sequence need to be duplicated across
many methods within a project, even though those three lines
might be rarely used in other projects.

Overall, MARBLE’s precision is 56%: the two annotators
agreed that 33 out of 59 candidates could be considered boil-
erplate. We conclude that MARBLE has acceptable precision.

3) RQ6 (Practicality): Does MARBLE return a reasonably
short list of boilerplate candidates for manual review?:



1 if (ActivityCompat.shouldShowRequestPermissionRationale(this,
2 Manifest.permission.READ EXTERNAL STORAGE)) {
3 } else {
4 ActivityCompat.requestPermissions(this,
5 new String[]{Manifest.permission.READ EXTERNAL STORAGE},
6 MY PERMISSIONS REQUEST READ EXTERNAL STORAGE);
7 }

Listing 2. Boilerplate code instance of Android ActivityCompat client codes.

Comparing the MARBLE results to PAM’s, the API sequence
miner our approach is built on (Section IV-A), we observe
that MARBLE significantly reduces the number of resulting
instances by applying further filtering on the PAM output
using AST comparison and graph partitioning. The reduction
is from a mean of 200 usage patterns per API with PAM
down to a mean of 4.5 boilerplate candidates with MARBLE
(median down from 79 to 3); the largest reduction is for
android.view.View), from 940 down to 11 (Table I).

We also measured the time it takes to label the boilerplate
candidates, to roughly estimate the time needed for a de-
signer’s manual review. The third author, who is an expert API
designer, took less than 3 minutes per boilerplate candidate,
and the first author, a software engineering Ph.D. student, took
around 5 minutes per candidate. Since we did not have enough
experience with some of the APIs, it took more time to read
the documentations and use cases. However, for API designers,
we believe that it would take less time to review the boilerplate
candidates, and find potential usability issues.

We conclude that MARBLE returns a sufficiently short list
of candidates for manual review to be feasible.

4) RQ7 (Usefulness): Does MARBLE identify informative
boilerplate candidates that could help a designer review an
API?: We manually reviewed all 59 boilerplate candidates
identified (full list available online [20]), looking for causes
and potential improvements.

Given the space constraints, we discuss only three boiler-
plate candidates returned by MARBLE.

Android ActivityCompat. Listing 2 shows potential boiler-
plate involving Android’s ActivityCompat, with two API calls:
ActivityCompat.shouldShowRequestPermissionRatio-

nale and ActivityCompat.requestPermissions.
This boilerplate is to ask a certain permission to a

user, but also provide an explanation if a user has
already denied the permission request from this app.
shouldShowRequestPermissionRationale returns true if
the user has previously denied the request, but did not select
the “Don’t ask again” option in the permission request dialog;
or false if the app has never asked a permission, a device
policy prohibits it, or the user has selected the option.

MARBLE identified that out of 486 files importing Activi-
tyCompat, this pattern is used in the same format in 36.

One potential redesign for better usability in this case is to
abstract this into the API by adding a simpler method which
handles permission checking and request rationale internally:
if the permission is not granted, it checks if the permission
request has been already denied or not, requests the permission
with or without explanation, and sends the results to the client.

1@Override
2public void onUpgrade(SQLiteDatabase db, int oldVersion, int currentVersion) {
3Log.w(TAG, ”Upgrading test database from version ” +
4oldVersion + ” to ” + currentVersion +
5”, which will destroy all old data”);
6db.execSQL(”DROP TABLE IF EXISTS data”);
7onCreate(db);
8}

Listing 3. Boilerplate code instance of Android Database SQLite client codes.

However, we hypothesize that there could be a design
rationale behind the current design, e.g., possibly to improve
the privacy of the users of Android applications. Although our
proposed abstraction could help new Android developers get
started with the API, lead to less code, and be less error prone
in these common cases, this could also give an impression
that providing rationale on permission requests to the Android
application users is not critical.

We argue that this trade off is only valid when users
understand the API designer’s rationale, or at least that the
rationale actually plays out as expected. If most users just
copy and paste this boilerplate code without much thought,
this design decision could reduce API usability without any
benefits. Therefore, alerting API designers to situations where
their design decisions result in boilerplate may help them
review to what extent their design rationale is valid.

Android Database SQLite is an open-source relational
database library in Android. Listing 3 shows a boilerplate code
instance to upgrade a database by dropping tables and creating
a new one, which requires using SQLiteDatabase.execSQL

and SQLiteOpenHelper.onCreate.
Although OnUpgrade was intended to provide flexibility

for users, MARBLE found that 40 client code files out of 68
overrode it in the same way, similar to Listing 3, by dropping
tables using execSQL and creating new ones with onCreate.
To mitigate this boilerplate, as discussed in Section III, API
designers could make the common usage, such as logging the
update, dropping the table, and recreating the database with a
new version, as the default functionality of onUpgrade. This
would allow users to write less code in general, and also give
them some flexibility if needed.

Another way to reduce this type of boilerplate is to use an-
notation libraries (e.g., the Spring framework [61]), or ORM –
Object Relational Mapping – libraries), which offer an object-
oriented interface to the relational database. Annotations and
ORM tools reduce the need for simple CRUD (Create, Read,
Update, and Delete) boilerplate, and many libraries have
adopted them (e.g., Neo4j-OGM). In fact, while reviewing
the client code using this boilerplate, we observed that 10 of
the client code files have adopted GreenDAO [62], which is
an ORM tool for Android. The fact that many clients adopt
a certain helper function or a tool can be a signal for API
designers to update their API similarly, or recommend these
tools to their clients for better usability. This boilerplate also
shows that seeing the common patterns of use, and whether
they could be abstracted by an annotation framework, might be



1 if (videoControlsView != null) {
2 this.seekBar = (SeekBar) this.videoControlsView.findViewById(R.id.vcv seekbar);
3 this.imgfullscreen = (ImageButton) this.videoControlsView.findViewById(R.id.

↪→ vcv img fullscreen);
4 this.imgplay = (ImageButton) this.videoControlsView.findViewById(R.id.

↪→ vcv img play);
5 this.textTotal = (TextView) this.videoControlsView.findViewById(R.id.

↪→ vcv txt total);
6 this.textElapsed = (TextView) this.videoControlsView.findViewById(R.id.

↪→ vcv txt elapsed);
7 }

Listing 4. Boilerplate code instance of Android View client codes.

useful for the helper library designers as well, in understanding
the needs of users, and developing a new library.

Android View. Notably, as the APIs we used for evaluation
are popular and actively maintained, in some cases we could
actually find the improvements that had already been made
by the API designers. The boilerplate candidate was still
detectable in our dataset because the clients had yet to upgrade
to the newer version of the API.

Listing 4 shows a classic boilerplate code for An-
droid View. These 5 lines of code are to find the views
from the XML layout resource file with the given IDs.
The pattern consists of multiple uses of one API call:
android.view.View.findViewById. We could observe
that 217 files out of 518 files use this method at least three
times in a row. It is already verbose since developers need to
call this method multiple times, but even worse because null
checking and typecasting are also needed.

A straightforward way to reduce this verboseness is to make
the return type of findViewById to a generic T, to eliminate
the need for manual typecasting. In fact, Android changed the
method’s definition from View findViewById(int id) to
T findViewById (int id) starting with Android 8.0 [63].
This shows that 1) API designers care about the boilerplate
code instances which reduce the API usability, and 2) inform-
ing API designers about the boilerplate candidates can actually
lead to usability improvements.

Like the previous boilerplate candidate, another way to
reduce this type of boilerplate is to use annotation libraries.
There are several libraries providing annotation supports for
this boilerplate (e.g., @BindView of ButterKnife [64]), by
helping users easily map the view ID declared in an XML
layout file with the Java variable.

C. Threats to Validity

Our approach may be biased by the small number of APIs
we tested it on. However, the boilerplate examples cover
various domains and design patterns, and we believe that the
properties we identified will generalize.

Note also that we only used 13 externally-known boilerplate
examples to extract boilerplate properties and as a validation
set to empirically choose the different thresholds involved.
Still, MARBLE was able to discover many previously un-
reported boilerplate examples, which reduces the threat of
overfitting.

As we only evaluated our algorithm with popular Java APIs
which have hundreds to tens of thousands of client files, it is
possible that the usefulness or performance of our algorithm
varies for other libraries, that are relatively new or less popular.
Also, as we analyzed the boilerplate instances with a single
API designer and a Ph.D. student, others may disagree that
our tool identifies boilerplate that is worth looking at.

VI. CONCLUSIONS AND FUTURE WORK

We presented the novel problem of mining software reposi-
tories to identify candidate boilerplate code, as a potential API
usability issue. We devised MARBLE, a new boilerplate min-
ing algorithm based on four properties of boilerplate code that
we identified from many sources (undesirable, high frequency,
locality, and limited structural variation). We evaluated our
algorithm on 13 Java APIs, finding many API usage patterns
indicative of potential improvements to the API designs.

Our study opens up several directions for future research.
First, we expect that integrating program analysis techniques,
especially program slicing [65], into MARBLE will be helpful.
One could run control and data flow analyses to identify
and extract the statements that are dependent on the target
API calls, or provide parameters and variables used by them,
which could improve the precision of our mining algorithm.
Second, the definition and properties of boilerplate could also
be refined. Future work could survey API designers and devel-
opers to get wider input on what properties of boilerplate code
they are most interested in having a tool capture, and adjust
the algorithm accordingly. Future work could also extend
the tool to support other languages, especially Javascript. We
expect that Javascript APIs might have more boilerplate code
instances, since the language has a huge ecosystem with a
variety of APIs, which leads to frequent interactions among
them, and also to frequent version changing. Finally, a more
extensive evaluation could involve deploying the tool for use
by many real designers in industry, in hopes of actually helping
them identify and eliminate some boilerplate code from clients
of their APIs, and review their design decisions. We plan such
a large-scale empirical evaluation as part of our future work.
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