
API Design Implications of Boilerplate Client Code
Daye Nam

Carnegie Mellon University
dayen@cs.cmu.edu

Abstract—Designing usable APIs is critical to developers’
productivity and software quality but is quite difficult. In this
paper, I focus on “boilerplate” code, sections of code that have
to be included in many places with little or no alteration, which
many experts in API design have said can be an indicator of API
usability problems. I investigate what properties make code count
as boilerplate, and present a novel approach to automatically
mine boilerplate code from a large set of client code. The
technique combines an existing API usage mining algorithm, with
novel filters using AST comparison and graph partitioning. With
boilerplate candidates identified by the technique, I discuss how
this technique could help API designers in reviewing their design
decisions and identifying usability issues.

I. INTRODUCTION

APIs are ubiquitous, and their usability is a significant
concern for API designers [1]–[6]. In particular, API designers
report that anticipating how developers will use their APIs is
difficult [7]. Although online sources (e.g., GitHub) contain
ample amounts of real client code, designers report that there
are not so many automated ways to mine usability data [7].

In this paper, I focus on one particular grievance that
developers express repeatedly [8]–[11] in online discussions
about APIs: boilerplate code, “sections of code that have to be
included in many places with little or no alteration” [12]. From
an API designer’s perspective, the existence of boilerplate code
may serve as an indicator of poor API usability. The need for
boilerplate code often indicates that the API does not directly
provide the methods that programmers need, or the API offers
unnecessary flexibility [13]. Thus, reviewing boilerplate client
code instances may help improve an API’s design.

I present an automated technique for identifying instances of
boilerplate API client code. The technique combines an exist-
ing API usage pattern mining approach with novel filters using
AST comparison and graph partitioning. Finally, I discuss the
API design implications of the mined boilerplate candidates.

II. COMMON PROPERTIES OF BOILERPLATE CODE

To help understand the characteristics of boilerplate code, I
collected boilerplate code examples and definitions from the
literature and online sources (e.g., GITHUB, Stack Overflow),
and distilled common properties that are operationalizable:

1) High frequency: Boilerplate code occurs frequently
among the API client code [11], [12]. 2) Localized: The
statements constituting boilerplate code are usually closely
located near each other, rather than spread over multiple
methods or files. 3) Little structural variation: The boilerplate

2 �(G A

.

2G F �
F F BA

2 FI�
)B CGF F BA

)(

2

� 12 �2 �2 3 � �����������������

� 12 � 1 � �2 �2 3 �

� 12 � � 16 � 1 ���

(B C F �
) A F E

A

1

1

C �
F F BA A

.

F�

) AF�)B � E

1 A � � E � FF AE

E�)BAF A A � � FF A

A

�) � F F BA

1.

FF A� A A
C F FBA�

��C FF A
& ��C FF A
A�����A

�0 16 �. � .

.
& �� 1 ��

�� 1 ��
.

Fig. 1. Overview of the mining process and the steps involved.

code instances appear in similar form without significant
variation [3], [14].

III. MINING BOILERPLATE CODE

I developed a technique to identify candidate boilerplate
code, i.e., instances containing calls to a target API and satis-
fying the above three properties, from software repositories. I
give a brief overview here (Figure 1). See [15] for details.

1) API Usage Pattern Mining: I start from an existing
API usage pattern miner, PAM [16], which satisfies the high-
frequency property. PAM probabilistically identifies sequences
of API calls that are frequently called together (i.e., API usage
patterns). The main novelty of my technique lies in filtering
down the many API usage patterns returned by PAM to a short
list of boilerplate candidates. I describe these filters next.

2) AST Extraction: The (structural) context around the API
calls is important to determine if an API usage pattern is also
a boilerplate candidate. Given a list of API usage patterns
(i.e., frequent API call sequences) and client code containing
instances of those patterns, I extract and post-process the ASTs
from the files. Per Property 2 above, I use a slicing heuristic:
I extract the smallest subtrees of each client code file’s AST,
which completely encompass the target API call sequence.

3) Graph Partitioning: Finally, I check Property 3: whether
the API call sequence is used consistently in similar structures
throughout the client code. I devise an approach to 1) compute
the similarity between all pairs of subtrees containing the API
call sequence using Tree Edit Distance [17]; and 2) cluster
together similar subtrees. Given a graph where the subtrees
are the nodes, and the similarity scores are the weights on
the edges, intuitively, if there is a cluster having a number of



1 if (videoControlsView != null) {
2 this.seekBar = (SeekBar) this.videoControlsView.findViewById(R.id.vcv seekbar);
3 this.imgfullscreen = (ImageButton) this.videoControlsView.findViewById(R.id.

↪→ vcv img fullscreen);
4 this.imgplay = (ImageButton) this.videoControlsView.findViewById(R.id.

↪→ vcv img play);
5 this.textTotal = (TextView) this.videoControlsView.findViewById(R.id.vcv txt total);
6 this.textElapsed = (TextView) this.videoControlsView.findViewById(R.id.

↪→ vcv txt elapsed);
7 }

Listing 1. Boilerplate code instance of Android View client codes.

subtrees, and the similarity between them is high, the cluster
(i.e., specific use case) can be a boilerplate candidate.

IV. API REVIEW

In this section, I show how the mined boilerplate candidates
could help API designers review and improve their APIs. I
analyzed 13 Java APIs, which contain at least one known
boilerplate code example. The proposed technique could iden-
tify 69% of known boilerplate instances with 56% precision,
and returned reasonable number of candidates for the manual
review. I manually reviewed all 59 boilerplate candidates
identified automatically, looking for causes and potential im-
provements to the API design. (See [15] for details.) Given
the space constraints, I discuss only two boilerplate candidates
here.

Android View. Listing 1 shows a classic boilerplate code for
Android View, identified automatically. This 5 lines of code is
to find the views from the XML layout resource file with the
given IDs. The pattern consists of multiple uses of one API
call: android.view.View.findViewById. I could observe
that 217 files out of 518 files use this method for at least three
times in a row. It is already verbose since developers need to
call this method multiple times, but even worse because null
checking and typecasting are also needed.

A straightforward way to reduce this verboseness is to make
the return type of findViewById to a generic T, to eliminate
the need for manual typecasting. In fact, Android changed
the method’s definition from View findViewById(int id)

to T findViewById (int id) from Android 8.0 [18]. This
shows that 1) API designers care about the boilerplate code
instances reducing the API usability, and 2) informing API
designers about the boilerplate code can lead to usability
improvement.

Another way to reduce this type of boilerplate is to use
annotation libraries (e.g., Spring Framework [19]). There are
several libraries providing annotation supports for this boiler-
plate (e.g., @BindView of ButterKnife [20]), by helping users
easily map the view ID declared in XML layout file with
Java’s variable. In practice, a number of clients actually adopt
them, which can be a signal for API designers to update their
API similarly, or recommend these libraries to their clients for
better usability. Also, this type of boilerplate candidates and
whether they could be abstracted by an annotation framework
might be useful for the helper library designers as well, in
understanding the needs of users, and developing a new library.

1private boolean checkPermission() {
2if (ActivityCompat.checkSelfPermission(this, Manifest.permission.

↪→ ACCESS FINE LOCATION) != PackageManager.
↪→ PERMISSION GRANTED &&

3ActivityCompat.checkSelfPermission(this, Manifest.permission.
↪→ ACCESS COARSE LOCATION) != PackageManager.
↪→ PERMISSION GRANTED) {

4ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.
↪→ ACCESS FINE LOCATION},
↪→ LOCATION PERMISSION REQUEST CODE);

5return false; }
6return true; }

Listing 2. Boilerplate code instance of Android ActivityCompat client codes.

Android ActivityCompat. Listing 2 shows potential
boilerplate code mined from Android’s ActivityCompat,
checking whether a context has an appropriate permission,
containing one or multiple uses of one API call:
ActivityCompat.checkSelfPermission. MARBLE
identified that out of 486 files importing ActivityCompat,
this pattern is used in the same format in 36. Also, many
clients built their own wrapper to check permission (including
Listing 2) due to its verboseness and inconvenience.

One potential redesign for better usability in this case
is to provide a more abstract method that handles permis-
sion checking: if the permission is not granted, the method
internally requests the permission and sends the results to
the user, and if it is granted already, the code continues.
Another potential mitigation is to provide helper functions
from API level, for popularly used permission sets, such as
hasLocationPermission or hasStoragePermission.

However, I hypothesize that there could be a design ratio-
nale behind the current design, e.g., possibly to improve the
debuggability of the code. Although the proposed abstraction
could help new Android developers get started with the API,
and lead to less code in these common cases, this could also
lead to less debuggable code. This trade-off, however, is only
valid when users understand the API designer’s rationale, or
at least that the rationale actually plays out as expected. If
most users just copy and paste this boilerplate code without
much thought, this design decision could reduce API usability
without any benefits. Thus, analyzing boilerplate candidates
could help API designers review to what extent their design
rationale is valid, and reconsider trade-offs.

V. CONCLUSIONS AND FUTURE WORK

I presented the novel problem of mining software reposito-
ries to identify candidate boilerplate code, as a potential API
usability issue. I devised a new boilerplate mining algorithm
based on three properties of boilerplate code (high frequency,
locality, and limited structural variation), and showed that it
could help API designers identify unknown usability issues.
Future work could survey API designers to get wider input on
what properties of boilerplate code they are most interested,
and adjust the algorithm accordingly. Also, an extensive eval-
uation could involve deploying the tool for use by many real
designers in the industry, in hopes of actually helping them
identify and eliminate some boilerplate code from clients of
their APIs, and review their design decisions.



REFERENCES

[1] J. Bloch, “How to design a good API and why it matters,” in Companion
to Conference on Object-oriented Programming Systems, Languages,
and Applications. ACM, 2006, pp. 506–507.

[2] E. Mosqueira-Rey, D. Alonso-Rı́os, V. Moret-Bonillo, I. Fernández-
Varela, and D. Álvarez-Estévez, “A systematic approach to API usability:
Taxonomy-derived criteria and a case study,” Information and Software
Technology, vol. 97, pp. 46–63, 2018.

[3] M. Reddy, API Design for C++. Elsevier, 2011.
[4] J. Stylos and B. A. Myers, “The implications of method placement

on API learnability,” in International Symposium on Foundations of
software engineering. ACM, 2008, pp. 105–112.

[5] U. Farooq and D. Zirkler, “API peer reviews: A method for evaluating
usability of application programming interfaces,” in Conference on
Computer Supported Cooperative Work. ACM, 2010, pp. 207–210.

[6] A. Macvean, M. Maly, and J. Daughtry, “API design reviews at scale,”
in Extended Abstracts on Human Factors in Computing Systems. ACM,
2016, pp. 849–858.

[7] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers,
“API designers in the field: Design practices and challenges for creating
usable APIs,” in Symposium on Visual Languages and Human-Centric
Computing. IEEE, 2018, pp. 249–258.

[8] “Collect GeometrySystem → drake visualizer boilerplate by
SeanCurtis-TRI pull request #8526 RobotLocomotion/drake,”
https://github.com/RobotLocomotion/drake/pull/8526.

[9] “Reduce boilerplate for subclasses issue #172 parse-community/Parse-
SDK-Android,” https://github.com/parse-community/Parse-SDK-
Android/issues/172.

[10] “Can java help me avoid boilerplate code in equals()?”
https://stackoverflow.com/questions/25183872/can-java-help-me-
avoid-boilerplate-code-in-equals.

[11] “Boilerplate code definition of stackoverflow,” https:
//stackoverflow.com/questions/3992199/what-is-boilerplate-code.

[12] “Boilerplate code definition of wikipedia,” https://en.wikipedia.org/wiki/
Boilerplate code.

[13] J. Tulach, Practical API design: Confessions of a Java framework
architect. Apress, 2008.

[14] “How to avoid writing duplicate boilerplate code for request-
ing permissions?” https://stackoverflow.com/questions/39080095/how-
to-avoid-writing-duplicate-boilerplate-code-for-requesting-permissions.

[15] D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu, “Marble:
Mining for boilerplate code to identify API usability problems,” in
International Conference on Automated Software Engineering. IEEE,
2019.

[16] J. Fowkes and C. Sutton, “Parameter-free probabilistic API mining
across GitHub,” in International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 254–265.

[17] M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-
efficient,” Information Systems, vol. 56, pp. 157 – 173, 2016.

[18] “Android API 26 release note,” https://developer.android.com/about/
versions/oreo/android-8.0-changes#fvbi-signature.

[19] “Spring framework,” https://spring.io.
[20] “Butterknife,” https://jakewharton.github.io/butterknife/.


