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Abstract—Almost all software development revolves around the
discovery and use of application programming interfaces (APIs).
Once a suitable API is selected, programmers must begin the
process of determining what functionality in the API is relevant
to a programmer’s task and how to use it. Our work aims to
understand how API functionality is discovered by programmers
and where tooling may be appropriate. We employed a mixed-
methods approach to investigate Apache Beam, a distributed data
processing API, by mining Beam client code and running a lab
study to see how people discover Beam’s available functionality.
We found that programmers’ prior experience with similar APIs
significantly impacted their ability to find relevant features in an
API and attempting to form a top-down mental model of an API
resulted in less discovery of features.

Index Terms—API discoverability, API usability, API learn-
ability, API usage analysis

I. INTRODUCTION

Application programming interfaces (APIs) are the
backbone of most modern software development.
Programmableweb.com has registered over 20,000 APIs,
with countless more private APIs existing for private, internal
use. Despite the prevalence of APIs, understanding how they
are used and areas for improvement or tooling support is still
an ongoing effort. One aspect of usage is how users find
available functionality within an API that will aid them in
their tasks.

Previous work in API usage analysis has found that the
frequency distribution of API method calls in the Java Devel-
opment Kit (JDK) follows the Zipf distribution, with over 90%
of the over 5000 analyzed projects using less than 5% of the
methods in the core JDK [1]. Zipf’s Law states that the most
frequently used term in a corpus will appear approximately
twice as often as the second term, and so on.

While the Zipf distribution has been observed in API usage,
it remains unclear what causes it. One possibility may be that
users are not discovering the proper functionality. One API
that may suffer from poor discoverability is Apache Beam [2],
a distributed data processing API available for Python, Java,

Go and other languages, as it is a relatively new API with a
less-established user base.

In this paper, we present a formative study about how
Beam programmers use available functionality and a lab study
to investigate the facets of API discoverability with Apache
Beam.

II. RELATED WORK

A. Studying Learnability and Usability of APIs

Much research effort attempts to understand what con-
stitutes a “usable” API and how to design one. Currently,
apiusability.org has indexed 71 publications over the last 22
years. Despite this ongoing effort, API usability is still seen
as an evolving field tackling multiple important issues such as
methods for evaluating and improving API usability [3]–[6]
and documentation’s affect on API usability [7]. One aspect
of API usability is its learnability [8], [9]. API learnability
and discoverability go hand in hand, as discovery is an integral
aspect of learning. Previous work has investigated what makes
an API learnable, especially with respect to documentation,
through investigating developer’s most pressing questions [10]
and obstacles [11] when learning an API. Some questions
appear to be discoverability issues, such as “which keywords
best describe a functionality provided by the API?” and “which
method from a list of overloaded methods is relevant to
my task?”, questions which are not easily answered through
simply looking at documentation. Stylos and Myers found
that discoverability was significantly hampered if a method or
object was not associated with the user’s chosen “starter” class
[12]. Discoverability through autocomplete has been shown to
help with this by clearly documenting the relationship between
a class and its methods by showing them as options [13], [14].

B. API Usage Analysis

One way of understanding the discoverability of an API’s
functionality is seeing how methods, classes, packages, and
interfaces are used at scale by analyzing the API’s usage.
Qiu et al. performed a large scale analysis across 5000 Java
projects to understand the frequency in which API calls were
made and found that the top 1% of packages make up 80% of978-1-5386-5541-2/18/$31.00 ©2019 IEEE



all API usage, with a similar pattern emerging for method,
interface, and class usage in the JDK [1]. Thummalapenta
and Xie developed a program which finds the “hotspots” and
“coldspots” of open source frameworks, where hotspots are
heavily reused portions of code and coldspots are API methods
that are rarely used. While the authors emphasize how hotspots
can serve as a fertile ground for tool and documentation usage
by highlighting popular patterns and methods, they do not
discuss where the coldspots come from or if they would be
beneficial to API users if they were to be found and used [15].

III. BACKGROUND

Apache Beam [2] is a distributed data processing API for
creating data pipelining programs. Beam can be configured
to read from streaming data sources and can run jobs on
large-scale processing platforms such as the Google Cloud
Platform. The way Beam programs are typically structured is
that the user defines a processing pipeline where data enters
the pipeline and is operated on, resulting in a new dataset
which is operated on, and so on. In the scope of this work,
we focus on how users find and adapt the built-in PTransforms
(or “transforms”) for their programs, since they provide the
structure for the pipeline.

IV. REPOSITORY MINING

To see how people discovered functionality at scale, we
wrote a script to mine from GitHub the uses of Apache Beam’s
transforms. Since there are fewer help resources available for
Beam, and less client code available as a reference on GitHub,
we hypothesized that this would lead to certain transforms
which are featured in the Programming Guide to be used more
often than other transforms.

1) Method: We used Selenium, an open source web au-
tomation tool (with a headless browser), to extract user-
repository pairs from Github search results pages. The pa-
rameters of the search were set to look for repositories
where Beam’s Python SDK was used. We used string pars-
ing techniques with a global dictionary of Beam transforms
(created from Beam’s documentation) in the corresponding
Python files to count the occurrences of each transform. As a
comparison, the same process was repeated to extract the count
of transforms for PySpark. Due to GitHub’s terms of service,
we were limited to mining the first 100 pages of the GitHub
search results for each API. For the Beam Python SDK, we
found 288 GitHub users with a total of 308 repositories. In
all of the files, a total of 3079 transforms were used. For
PySpark, we found 502 users with 517 repositories. To have a
comparable number of repositories for the 2 APIs we randomly
sampled 310 repositories from this collection (60%) which
contained a total of 3962 PySpark transforms.

2) Analysis and Results: Figure 1a and Figure 1b show the
frequency distribution of transforms in the mined repositories
for Beam and Spark, respectively. As expected, we observe
a long tailed distribution, matching the trend observed in the
JDK [1]. A closer look at the distribution reveals some inter-
esting trends. For example, Map was the most frequently used

transform in Beam (appearing in 65% of the projects) despite
not being included in the Programming Guide’s list of Beam’s
Core Transforms, which represent transforms corresponding
to the main processing paradigms in Beam. The popularity
of Map among users may be attributed to the fact that it is
used as a construct in many data processing APIs. The second
most frequent transform is ParDo, which is a core transform
appearing in 34.4% of the projects. This is not surprising
as it is the most “advertised” transform in the programming
guide. Other common transforms are also the ones which are
either explicitly mentioned in the text (green) or appear in the
examples (red) as shown in Fig 1a.

We observe a similar distribution of transforms in Spark
– most of the frequently used transforms in Spark appear in
the programming guide (green in Figure 1b). In general, more
transforms explicitly appear in the guide but surprisingly quite
a lot of them are rarely used (tail in Figure 1b). We hypothesize
that their long obscure names or very specific functionality
(required for rare use cases) might be reducing the use
of these transforms. Unsurprisingly, across both APIs, more
emphasized functions in the programming guides are more
frequently used. This could either mean that the documentation
team correctly predicted that these are the transforms most
users would want to know or it could be that, since they are
the easiest to learn about, developers adapted their programs
to use them. However, being in the Programming Guide does
not guarantee usage – for example in Beam, FixedWindows, a
helper function for the window transform, is used in a code
example in the programming guide but never appeared in any
of the files we analyzed. Moreover, some transforms which
are never explicitly discussed in the programming guide are
still used. The most frequently used transform in Beam that is
not in the programming guide is Filter (5.6% of client files),
which we speculate is a particularly easy name to guess.

V. LAB STUDY

Since we are interested in understanding how people find
functionality in Beam, make sense of it, and choose to adopt
it into their programs, we developed an exploratory lab study.

We applied pre-existing learning-based models to discover-
ability and learnability of API functions. We chose to look at
familiarity of concepts and robustness of a user’s mental model
[5] and programming learning styles [9] as a framework of
discoverability as these theories impact how the programmers
make sense of an unfamiliar API. This can be summarized in
the following 2 research questions:

• RQ1. How does familiarity with the API’s core concepts
affect the discoverability of API functionality?

• RQ2. How do different learning styles affect the discov-
erability of API functionality?

A. Method

We recruited undergraduate and masters students studying
computer science who had some amount of experience with
Python and a data processing or analysis API such as Apache
Spark, numpy, or pandas. In total, we recruited 10 participants,



Map
ParDo
Create
FlatMap
GroupByKey
Count
CombinePerKey
WindowInto
Flatten
Filter
CombineGlobally
Top
Partition
Mean
Sample
CombineValues
Impulse
ToDict
Values
BatchElements
Reshuffle
CombineFn
Keys
ToList
RemoveDuplicates
AccumulationMode
AfterAll
AfterAny
AfterCount
AfterEach
AfterProcessingTime
AfterWatermark
BagRuntimeState
BagStateSpec
BoundedWindow
CoGroupByKey
CombiningValueRuntimeState
CombiningValueStateSpec
DefaultTrigger
DisplayData
DisplayDataItem
ExternalTransform
FixedWindows
GlobalWindow
GlobalWindows
HasDisplayData
IntervalWindow
KvSwap
NonMergingWindowFn
OrFinally
PartitionFn
Repeatedly
RuntimeState
RuntimeTimer
SideInputMap
StateSpec
TimeDomain
TimerSpec
TimestampCombiner
TimestampedValue
TriggerFn
UserStateContext
WindowFn
Windowing
create_source
default_window_mapping_fn
get_dofn_specs
is_stateful_dofn
memoize
on_timer
validate_stateful_dofn

0

10

20

30

40

50

60
Pe

rce
nta

ge
 of

 Re
po

sit
ori

es

a) Beam Transforms

Not in Programming Guide
Programming Guide (Text)
Programming Guide (Examples)

map
collect
reduce
join
filter
count
reduceByKey
take
flatMap
groupBy
sortBy
zip first
max
distinct
sortByKey
cache
foreach
min
name
randomSplit
context
groupByKey
union
values
persist
mapValues
sum
takeSample
mean
unpersist
mapPartitions
coalesce
zipWithIndex
repartition
sample
aggregate
getNumPartitions
isEmpty
top aggregateByKey
cartesian
collectAsMap
subtract
takeOrdered
checkpoint
histogram
pipe
combineByKey
countByKey
mapPartitionsWithIndex
partitionBy
variance
countByValue
fold
foreachPartition
glom
rightOuterJoin
subtractByKey
sumApprox
cogroup
flatMapValues
getStorageLevel
keyBy
leftOuterJoin
lookup
stats
zipWithUniqueId
countApprox
countApproxDistinct
foldByKey
fullOuterJoin
getCheckpointFile
groupWith
isCheckpointed
isLocallyCheckpointed
localCheckpoint
mapPartitionsWithSplit
meanApprox
reduceByKeyLocally
repartitionAndSortWithinPartitions
sampleByKey
sampleStdev
sampleVariance
saveAsHadoopDataset
stdev
toLocalIterator
treeAggregate
treeReduce

0

10

20

30

40

50

60

Pe
rce

nta
ge

 of
 Re

po
sit

ori
es

b) Spark Transforms

Not in Programming Guide
Programming Guide

Fig. 1: Distribution of Transforms in (a) Beam and (b) Spark

4 men and 6 women. None were familiar with Beam. We
administered a think-aloud study with two experimenters,
one running the study while the second took notes. The
participant’s computer screen and audio were recorded while
they completed the task. Participants were compensated $10
for their time.

We adapted an existing Python SDK Beam word count
sample program to be the task, as we felt that it served as
a benchmark for what the Beam designers felt were essential
transforms a user should be familiar with. The script includes
a class that must be called with Beam’s ParDo transform to
extract the words, and then uses two Python functions to
count each time a word appears and to format the results.
We refer to this code as ”helper” code. The correct script
had a total of either 6 or 7 possible correct transforms in the
given order, as the grouping keys and summing 1’s may either
be done with two transforms (GroupByKey and Map) or one
(CombinePerKey).

Participants were introduced to Beam, PyCharm, and the
autocomplete tools for 10 minutes. Participants were then
given 30 minutes to complete the word count task followed by
up to 15 minutes for post-task questions, which asked about
the participants problem-solving style in general, where they
looked for information, and the help resources they used.

B. Analysis

Videos of the participants completing the task were coded to
indicate when they used autocomplete, when the users were in
the editor versus looking at the programming guide, every time
they added, deleted or modified code and what the changes to
their code were, and when they ran their code. From this we
analyzed how participants spent their time while they tried to
understand and use the API.

We correlated these data with the success the participants
had on the task, where success was measured based on the
correctness of the user’s chosen transforms. Due to recording
failures, only 8 of the 10 participants were coded for time-
spent during the task and help resources used during the task.
The first, third, and sixth authors completed the analyses of
the videos.

C. Results
None of the participants fully succeeded on the task,

however, all participants were able to get at least 1 correct
transform. The average score was 3 correct transforms out of
a possible 6 or 7, with a mode of 2. The lowest score was
1 correct transform, while the highest score was 5. We are
interested in understanding this large variability in terms of
correct transforms and how the models we adapted for our
RQs are interconnected in the way they characterize discovery.

We began by investigating RQ1 - the extent to which each
participant had familiarity with data processing APIs and
how that impacted discoverability. All participants had some
amount of experience with data processing and analysis APIs,
but there was a divide in terms of type of experience. 3 partic-
ipants had experience using distributed, map-reduce paradigm
APIs (Hadoop, Apache Spark, and MapReduce), while the
remaining 7 only had experience using non-distributed data
analysis APIs (numpy, scipy, and pandas). We found that the
participants who had experience using at least one of the
distributed data processing APIs performed significantly better
on the task with a mode of 5 correct transforms (T-test: p
<.02, Cohen’s d = 2.439751). The participants who only had
experience with non-distributed APIs such as numpy had less
success, with a mode of 2 correct transforms.

Not surprisingly, we saw evidence that familiarity with
similar APIs allowed participants to draw upon their prior



knowledge. For example, P1, who had prior experience using
Apache Spark, stated in the post task interview that their search
for functionality was driven by “the Spark API in the back of
my head.” Since they were able to draw analogies between
the APIs, they were able to more accurately guess what
functionality the API would and would not provide. However,
this strategy broke down for Beam-specific constructs. For
example, P5, who had experience with Spark and got 5
transforms correct, said that, with autocomplete, they were
able to find and figure out everything except for “ParDo,”
Beam’s “parallel do” function. In contrast, participants without
distributed API processing experience were less likely to know
what the API would be able to do as they made incorrect
assumptions about what functionality the API would provide.

In order to answer RQ2, how differing programming styles
impacted discoverability, we analyzed how programmer’s
spent their time during the task. We characterized these activ-
ities as either enrichment activities such as reading ”helper”
code and the programming guide, versus task-progression
activities such as adding and editing code. We were interested
in how the focus on these different activities would affect how
participants discover and use transforms.

Attempting to discover elements of Beam primarily through
the programming guide was not a successful strategy. P7, the
only participant who spent the majority of her time in the
programming guide, successfully discovered 2 transforms and
gained a comprehensive understanding of ParDo, Beam’s most
discussed transform. She chose to use it for multiple steps of
the pipeline, despite only needing it for the first step. The other
transform she discovered, GroupByKey lacked an example in
the programming guide, leaving her unsure how to use it and
what data type it expected.

The programmers who started off with enrichment activities,
then spent a good amount of time attempting to program
before going back to enrichment activities such as P3, P4,
P5 and P8 were mostly successful. For example, P5 began by
writing code and, through the code completion, discovered that
there was a Map transform, a Filter transform, and a Sample
transform which he felt he could use for nearly every step
of the pipeline until he realized this would not work for the
first step of the task, which requires ParDo, and moved to
the documentation. Our findings are generally consistent with
prior work [9], [16]–[19] that finds that programmers have
different learning styles – some are systematic and prefer
a more top-down approach of reading documentation first,
whereas others are more pragmatic and prefer to focus on
coding until they realize they need to learn something from
the documentation.

VI. DISCUSSION AND IMPLICATIONS

We investigated two facets of discoverability – develop-
ers’ previous API usage and programming styles. We are
interested in how these facets affect one another and result
in a programmer’s ability to discover the functionality they
are interested in. While our evidence supports the claim
that a developer’s past experience best predicts their ability

to discover relevant information in a new, similar API, P4
serves as an interesting counterpoint – despite having no
prior experience with distributed data processing APIs, he
still discovered 5 transforms. One way in which P4 shared
similarity with the other top performers was in programming
style. P3, P4, and P5 all spent some time in the beginning
of the task familiarizing themselves with the programming
guide and ”helper” code prior to writing code with P3 also
spending time looking at autocomplete, and then proceeding
to move into implementation. Those who spent more time
attempting to comprehensively understand everything about
Beam before attempting the task had less success. Essentially,
programmer’s prior experience was the most important factor
in their ability to discover new functionality, but programming
style also benefited or hindered discovery.

We propose some potential implications for API designers
to consider to improve the discoverability of API entities
through modifications to documentation and tooling. One way
in which participants struggled was by attempting to search
for transforms in the programming guide. Both P2 and P10
attempted to search for “pair” or “key/value pair” but were un-
successful. P6 searched for “tuple” in the programming guide
to no avail. These unsuccessful queries hindered discovery of
applicable transforms as they returned irrelevant results. One
possible solution is supplying multiple keywords that relate to
vocabulary from other APIs or the function’s intended purpose.
API designers should ensure that method names are easily
understandable and, for constructs that have naming specific to
their API, provide thorough explanations or analogies relating
these constructs to more well-known concepts.

VII. THREATS TO VALIDITY

We chose to only study Apache Beam’s discoverability,
which may not be representative of other APIs. The task was
also relatively short, so it is unclear that if the task was longer,
the discoverability behavior may have changed over time as
participants grew more familiar with the API. Future studies
may benefit from seeing how growing familiarity with an API
changes how participants discover features.

For our mining study, we are unsure if we looked at a truly
representative sample of Beam repositories – for example it
might be that most production level repositories are either
private or stored outside of GitHub. We also only looked at the
Python SDK Beam usage, which may not be representative of
Java or Go usage.

VIII. FUTURE WORK

In future work, we will attempt to create responsive doc-
umentation, which, based upon the user’s prior knowledge,
recommends potential features to use. Considering prior ex-
perience was the largest influence on how well programmers
were able to discover features, perhaps documentation could
self-adapt by gauging the user’s prior experience in order to
supply differing levels of information to facilitate discovery.
We are also interested in investigating how developer’s inter-
personal networks impact discoverability.
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